### 3.3 Polynomial Functions in Factored Form

## A Simple Zeros

Some polynomial functions can be factored in the form:

$$
f(x)=a_{n}\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n-1}\right)\left(x-x_{n}\right)
$$

$x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}$ are $n$ distinct (different) real numbers and the zeros (or the x-intercepts) of the polynomial function.

Notes:

- The function changes sign at each x -intercept.
- The tangent line at each $x$-intercept is not horizontal.



## B Repeated Zeros

Some polynomial functions can be factored in the form:

$$
f(x)=a_{n}\left(x-x_{1}\right)^{m_{1}}\left(x-x_{2}\right)^{m_{2}} \ldots\left(x-x_{k}\right)^{m_{k}}
$$

$x_{1}$ is a zero of multiplicity (order) $m_{1}, x_{2}$ is a zero of multiplicity (order) $m_{2}$, and so on.

The polynomial function has $m_{1}+m_{2}+\ldots+m_{k}=n$ real zeros ( $m_{1}$ are coincident (same or identical) and equal to $x_{1}, m_{2}$ are coincident and equal to $x_{2}$, and so on).

Notes:

- If $m_{1}$ is odd, the function changes sign at $x=x_{1}$ and the graph crosses the x-axis.
- If $m_{1}$ is even, the function does not change sign at $x=x_{1}$ and the graph touches the x -axis.
- If the multiplicity $m_{1}$ is greater that 1 then the tangent line at $x=x_{1}$ is horizontal.


Ex 1. Sketch the graph of the following polynomial functions.
a) $f(x)=(x-1)(x+3)$
b) $f(x)=(x+1)(x+2)(x+3)$
c) $f(x)=-2(x-1)(x-2)(x+3)$
d) $f(x)=-(x-1)(x+2)(x-3)(x+4)(x-5)$
e) $f(x)=x^{3}-x^{2}-2 x$
f) $f(x)=\left(1-x^{2}\right)\left(x^{2}-4\right)$
g) $f(x)=x^{4}-4 x^{2}+3$

Ex 2. Sketch the graph of the following polynomial functions.
a) $f(x)=-(x-1)^{2}$
b) $f(x)=2(x+1)^{3}$
c) $f(x)=2(x-1)^{2}(x+1)^{3}$
d) $f(x)=-(x+1)(x-2)^{2}(x+3)^{3}(x-4)^{4}$
C Non-real Zeros
A polynomial functions with non-real zeros (complex
zeros) can be factored as

$$
f(x)=\left(a_{1} x^{2}+b_{1} x+c\right)^{m^{1}} \times \ldots
$$

where $\Delta_{1}=b_{1}{ }^{2}-4 a_{1} c_{1}<0, \ldots$
Note. Each trinomial $a_{1} x^{2}+b_{1} x+c$ has the same sign
(the sign of $c$ ) for all real numbers $x$.

Ex 4. Find a polynomial $P(x)$ of degree six with zeros:

- $\quad x_{1}=1$ of multiplicity $m_{1}=3$
- $\quad x_{2}=-2$ of multiplicity $m_{2}=2$
- $x_{3}=-1$ of multiplicity $m_{3}=1$
such that its graph passes through the point $(2,-8)$.

Ex 6. Sketch the graph of the polynomial function:
$y=f(x)=\left(x^{2}-4\right)^{2}$.

Ex 3. Sketch the graph of the following polynomial functions.
a) $f(x)=(x-1)(x+2)^{2}\left(x^{2}+1\right)$
b) $f(x)=2(x+1)(x-2)(x-3)^{2}(x+4)^{3}\left(-x^{2}+x-1\right)$

Ex 5. Sketch the graph of the polynomial function: $y=f(x)=\left(1-x^{3}\right)\left(x^{2}-4\right)$.

Ex 7. Sketch the graph of the polynomial function: $y=f(x)=\left|x\left(x^{2}-1\right)\right|$.

