3.3 Polynomial Functions in Factored Form

A Simple Zeros	Ex 1. Sketch the graph of the following polynomial functions.
Some polynomial functions can be factored in the form:	(a) $f(x) = (x - 1)(x + 3)$
$f(x) = a_n(x - x_1)(x - x_2)(x - x_{n-1})(x - x_n)$	a) $f(x) = (x - 1)(x + 3)$
$x_1, x_2, \dots, x_{n-1}, x_n$ are <i>n</i> distinct (different) real numbers	b) $f(x) = (x+1)(x+2)(x+3)$
and the zeros (or the x-intercepts) of the polynomial	c) $f(x) = -2(x-1)(x-2)(x+3)$
Netes	d) $f(x) = -(x-1)(x+2)(x-3)(x+4)(x-5)$
	$(1) (1) (1) (1)^{3} (1)^{2} (2)$
 The function <i>changes sign</i> at each x-intercept. The tangent line at each x-intercept <i>is not</i> 	e) $f(x) = x - x - 2x$
horizontal.	f) $f(x) = (1 - x^2)(x^2 - 4)$
	g) $f(x) = x^4 - 4x^2 + 3$
x	
B Repeated Zeros	Ex 2. Sketch the graph of the following polynomial functions
Some polynomial functions can be factored in the form:	
$f(x) = a_n (x - x_1)^{m_1} (x - x_2)^{m_2} \dots (x - x_k)^{m_k}$	a) $f(x) = -(x-1)^2$
x_1 is a zero of <i>multiplicity (order)</i> m_1 , x_2 is a zero of	
multiplicity (order) m_2 , and so on.	
The polynomial function has $m_1 + m_2 + + m_k = n$ real	b) $f(x) = 2(x+1)^3$
zeros (m_1 are coincident (same or identical) and equal to x_1 , m_2 are coincident and equal to x_2 , and so on).	
noles.	
• If m_1 is odd, the function <i>changes sign</i> at $x = x_1$ and the graph <i>crosses</i> the x-axis.	c) $f(x) = 2(x-1)^2 (x+1)^3$
• If m_1 is even, the function does not change sign at	
$x = x_1$ and the graph <i>touches</i> the x-axis. If the multiplicity m_1 is greater that 1 then the	
tangent line at $x = x_1$ is <i>horizontal</i> .	
	d) $f(x) = -(x+1)(x-2)^2(x+3)^3(x-4)^4$
m_1 is odd	
m_1 is even x	
•	

C Non-real Zeros A polynomial functions with <i>non-real zeros</i> (complex zeros) can be factored as	Ex 3. Sketch the graph of the following polynomial functions. a) $f(x) = (x-1)(x+2)^2(x^2+1)$
$f(x) = (a_1x^2 + b_1x + c)^{m^1} \times$ where $\Delta_1 = b_1^2 - 4a_1c_1 < 0$, Note. Each trinomial $a_1x^2 + b_1x + c$ has the same sign (the sign of c) for all real numbers x .	b) $f(x) = 2(x+1)(x-2)(x-3)^2(x+4)^3(-x^2+x-1)$
Ex 4. Find a polynomial $P(x)$ of degree six with zeros: • $x_1 = 1$ of multiplicity $m_1 = 3$ • $x_2 = -2$ of multiplicity $m_2 = 2$ • $x_3 = -1$ of multiplicity $m_3 = 1$ such that its graph passes through the point (2,-8).	Ex 5. Sketch the graph of the polynomial function: $y = f(x) = (1 - x^3)(x^2 - 4)$.
Ex 6. Sketch the graph of the polynomial function: $y = f(x) = (x^2 - 4)^2$.	Ex 7. Sketch the graph of the polynomial function: $y = f(x) = x(x^2 - 1) $.

Reading: Nelson Textbook, Pages 139-145 Homework: Nelson Textbook, Page 146: #1, 2, 4, 7, 9ab, 10cd, 13b, 15